
Lecture 5: October 18
Interviews, Git, CI/CD

Agenda

- Project Website Requirements
- Project Status Check-in
- Software Engineering Interviews
- Git, PR Reviews
- CI/CD

Team Website Requirements

Team Website

Goal: Act as a central, public location to show off your senior design project

Examples: https://gw-cs-sd-2022.github.io/tutorials/project-teams.html

For Sunday:

- Deploy a basic template for your team website
- Include an about us section with photos & info on team members

As the year progresses, you’ll update the website with more information

Setup Instructions: https://pages.github.com/ ,
https://docs.github.com/articles/configuring-a-publishing-source-for-github-pages/

https://gw-cs-sd-2022.github.io/tutorials/project-teams.html
https://pages.github.com/
https://docs.github.com/articles/configuring-a-publishing-source-for-github-pages/

Project Status Check-in

October Deliverables

- Updated Gantt Chart
- Writing: Executive Summary
- Writing: Technical Summary (due 10/29)
- Presentation 1: Elevator Pitch
- Presentation 2: Technical Design (due)

Current Focus

- Begin technical investigations (services, apis, programming language)
- Flesh out project functionality & requirements
- Coding should start (scaffolding, ci/cd, prototyping)

Software Engineering Interviews

What interviewers are testing for

- Analytical Skills
- Could you solve the problem? Did you solve it optimally? For system design, did you

structure the problem well & think through tradeoffs?
- Coding skills

- Could you translate your algorithm to code? Was it well-organized? Did you use good style?
- Technical knowledge

- Do you have a strong foundation in the relevant technologies?
- Experience

- Have you made good technical decisions in the past? Have you built interesting projects?
- Culture fit / Communication skills

- Do your values fit with the company and team? Can you communicate your thoughts clearly?

Engineering Interview Process (one possibility)

1. Recruiter Screen
2. Hiring Manager Screen (optional)
3. Coding screen/take home project
4. System Design
5. Team Fit / Behavioral
6. Subject-specific interview / coding problems

Why companies use this process

- Problem Solving skills & clear communication is valuable
- You’ll spend a good amount of time talking through problems with other engineers. Coding

challenges are a (sometimes poor) proxy for this
- Data structures & algorithms are useful

- Knowledge of fundamentals is a good proxy for how versed in CS you are
- They do come up in work, and when they do its important to know the basics

Why companies use this process

- False negatives are ok, false positives are not
- Better for companies to reject good candidates than accept poor fits.

Being good at interviews is a practiced skill, and is only tangentially related
to being a good engineer

Recruiter Screen

- Purpose: identify if you meet the minimum requirements on paper
- ~15 minutes long
- Interviewer likely knows very little about the technical requirements for the

position
- Your resume plays the largest role in this stage

- Should be easily skimmable
- Skills & technologies should be clearly listed

Hiring Manager Screen

- Purpose: pitch you on the company, confirm you meet minimum technical
requirements

- ~30 minutes long
- Interviewer will be technical, acts as a filter before you begin the rest of the

interview process
- This interview is more common in smaller companies & startups

Coding Screen / Take Home Project

- Purpose:
- problem solving ability
- coding ability
- algorithms fundamentals

- 45 mins - 1 hr long
- Interviewer will be technical

Coding Screen: Tips

- Use python – it saves you a ton of boilerplate
- Communication:

- Talk out your thought process, the worst thing is a silent candidate
- Ask clarifying questions to understand the problem
- If you don’t know the syntax, ask your interviewer
- If you have a brute force solution, explain it before moving to a more optimal approach

- Coding:
- Walk through examples & define edge cases before writing code
- Start with pseudocode (or just use python)
- Start with a brute force solution
- Walk through your code with examples
- Practice algorithms & data structures

- Resources
- Cracking the Coding Interview
- www.pramp.com
- https://www.structy.net/

http://www.pramp.com

System Design

- Purpose: Can you break down a large ambiguous problem into manageable
pieces

- 45 mins - 1 hr long
- More typical for non-junior candidates
- Evaluates your ability to be a tech lead, not a programmer

Tips

- Ask lots of questions, the problem will be ambiguous
- Take good notes so the interviewer has something to review
- Talk through tradeoffs, there is rarely a “correct” answer

Team fit / behavioral

- Purpose: Do you work well with others, do your values align with the
company & team

- 45 mins - 1 hr long
- Interviewer is usually someone you will work closely with

Tips

- Be prepared to discuss prior experiences from your resume
- Have a few anecdotes on hand about challenges you faced and how you

addressed them

Subject-specific

- Purpose: Do you have the specialized skills needed for the role
- 45 mins - 1 hr long
- This will depend a lot on the position (ml, security, data science)
- Interviewer is usually a senior engineer
- May ask questions about projects on your resume

Overall Interview Fundamentals

- If you join a zoom call and the interviewer isn’t there, give it 5 minutes before
dropping/reaching out to the interviewer

- If you need to reschedule, do so as early as possible
- Dress appropriately
- Turn your camera on
- Ask thoughtful questions
- Send thank you notes
- Once employed, try to interview as soon as you can!

Git

Git Workflow Diagram

Git Workflow Diagram for Senior Design

Developing a feature

git checkout main && git pull
git checkout -b js-my-feature
git push -u origin js-my-feature

(code changes)
git add .
git commit -m “made changes”
git push

git checkout main && git pull
git checkout js-my-feature
git merge main (may need to resolve merge conflicts)
git push
(open PR)

Git Resources

- ChatGPT
- https://dangitgit.com/en
- https://www.atlassian.com/git/tutorials/using-branches
- https://code.visualstudio.com/docs/sourcecontrol/overview#_3way-merge-ed

itor
-

https://dangitgit.com/en
https://www.atlassian.com/git/tutorials/using-branches
https://code.visualstudio.com/docs/sourcecontrol/overview#_3way-merge-editor
https://code.visualstudio.com/docs/sourcecontrol/overview#_3way-merge-editor

PR Reviews

Purpose of Code Reviews

- Ensure that team members are aware of changes to the codebase
- Allow others to verify the correct things are being tested
- Facilitate discussions over implementation design

The overall code health should be improving over time, and developers should
make progress on their tasks

Reviewers should favor approving PRs once its in a state where it
improves code health, even if the PR isn’t perfect

Authoring a Pull Request

- A single PR should represent a single piece of functionality
- Multiple PRs with small changes is better than one PR with lots of changes
- The description should include what changed and why the change is

necessary
- Add pr comments to code changes to help reviewers navigate the diff
- [Optional] link PR to trello/jira ticket
- If the PR is large or complicated, meet with the reviewers to discuss

Reviewing a Pull Request

Goal: Ensure the changes are positive, even if they aren’t perfect

- Mountain: feedback that blocks all related work and requires immediate
action

- Boulder: feedback that blocks the work from being approved, but doesn’t
require immediate action

- Pebble: feedback that does not block the PR, but requires future action
- Sand: feedback that is not blocking, but should be considered if multiple team

members concur.
- Dust/nit: feedback that is more a suggestion and not required

https://www.netlify.com/blog/2020/03/05/feedback-ladders-how-we-encode-code-reviews-at-netlify/

Code Reviews for Senior Design

- Team members should not push directly to main
- Team members should try to review each other’s code
- Mentors can provide code feedback if requested, but should not be

reviewing all code changes
- PRs do not need to be blocked by approvals

CI/CD

Continuous Integration & Deployment

- Continuous Integration is a practice that involves frequently and automatically
integrating code changes into a shared repository. The core idea is to detect
and address integration issues early in the development process.

- Unit tests, integration tests, linting. Blocks merging bad code. Frees up developers from
manually testing

- Continuous Deployment is an extension to CI that automates the deployment
process. It means every code change that passes CI tests is automatically
deployed without manual intervention.

- Builds artifacts, deploys to staging and/or prod environments

Example CI/CD Pipeline

- Run the CI step on every push
- Gate merges on CI step

- Run the deploy step on every push to main
- Gate deploy step on CI step

CI/CD Tools

- Circle CI, Travis, Jenkins, Argo, Codefresh, Spinnaker
- Github Actions

- Free!
- Easy to configure as part of your github repo

Example Github Action Pipeline

CI/CD for Senior Design

- This is not required, but highly recommended
- Use github actions for CI/CD execution
- Recommended CI steps (on every push):

- Lint code
- Run tests
- Build artifacts

- Recommended CD steps (on merges to main or manual trigger):
- Build artifacts
- Deploy changes

Reminders

Ongoing Work

- Create & update October trello boards (these are graded!)
- Post weekly standup updates to team slack channels (these are graded!)

Deliverables & Due Dates

- Team Website due 10/22

